地图学与地理信息系统

当前位置: 首页 >> 研究生教育 >> 硕士生导师 >> 地图学与地理信息系统 >> 正文

靳佳

发布日期:2022-11-01 作者:必赢唯一官方网站 来源: 必赢唯一官方网站 点击:

 

姓名: 靳佳 性别:
学位学历: 博士研究生 职称: 助理研究员
电子邮箱: jinjia@nnnu.edu.cn 办公电话:
通讯地址: 南宁师范大学武鸣校区地海楼

 

个人简介:

靳佳,男,硕士研究生导师,主要从事植被生理生态参数高光谱定量遥感机制与方法研究。博士毕业于中国科学与新疆生态与地理研究所地图学与地理信息系统专业。201711-20193月在日本静冈大学担任特任助教。主持国家自然科学基金1项,省部级项目2项,教育部重点实验室开发课题1项,参与多项高光谱定量遥感相关国家自然科学基金项目的研究工作。受邀担任Remote Sensing等期刊特约编辑。目前已发表论文30余篇(其中SCI一作13篇),书籍章节2篇,研究成果发表在Agricultural and Forest MeteorologyIEEE Transactions on Geoscience and Remote Sensing, International Journal of Applied Earth Observation and GeoinformationRemote SensingJournal of Environmental ManagementEcological Informatics等国际期刊。

 

研究领域:

植被参数高光谱遥感反演机制与方法,辐射传输模型,生态系统过程模型

 

科研项目:

国家自然科学基金,干旱胁迫下植物水分利用高光谱响应机制及反演研究,主持

广西科技计划项目,基于高光谱遥感的特色作物水分利用实时监测与干旱预警研究,主持

浙江省自然科学基金,基于高光谱遥感的毛竹林蒸腾监测及其干旱预警系统研究,主持

 

代表性论著:

  1. Jin J, Wang Q. Hyperspectral indices developed from the low order fractional derivative spectra can capture leaf dry matter content across a variety of species better[J]. Agricultural and Forest Meteorology, 2022, 322: 109007.

  2. Jin J, Wu M, Song G, et al. Genetic Algorithm Captured the Informative Bands for Partial Least Squares Regression Better on Retrieving Leaf Nitrogen from Hyperspectral Reflectance[J]. Remote Sensing, 2022, 14(20): 5204.

  3. Jin J, Huang N, Huang Y, et al. Proximal Remote Sensing-Based Vegetation Indices for Monitoring Mango Tree Stem Sap Flux Density[J]. Remote Sensing, 2022, 14(6): 1483.

  4. Wu M, Jin J, Wang J, et al. Hyperspectral indices developed from multi-angular bidirectional reflectance can trace the particle size of granite[J]. Acta Geophysica, 2022,

  5. Song G, Wang Q, Jin J. Temporal instability of partial least squares regressions for estimating leaf photosynthetic traits from hyperspectral information[J]. Journal of Plant Physiology, 2022, 279: 153831.

  6. Jin J, Wang Q, Song G. Selecting informative bands for partial least squares regressions improves their goodness-of-fits to estimate leaf photosynthetic parameters from hyperspectral data[J]. Photosynthesis Research, 2021, 151(1): 71-82.

  7. Song G, Wang Q, Jin J. Exploring the instability of the relationship between maximum potential electron transport rate and maximum carboxylation rate in cool-temperate deciduous forests[J]. Agricultural and Forest Meteorology, 2021, 308-309: 108614.

  8. Song G, Wang Q, Jin J. Including leaf trait information helps empirical estimation of jmax from vcmax in cool-temperate deciduous forests[J]. Plant Physiol Biochem, 2021, 166: 839-848.

  9. Jin J, Arief Pratama B, Wang Q. Tracing Leaf Photosynthetic Parameters Using Hyperspectral Indices in an Alpine Deciduous Forest[J]. Remote Sensing, 2020, 12(7): 1124.

  10. Song G, Wang Q, Jin J. Leaf Photosynthetic Capacity of Sunlit and Shaded Mature Leaves in a Deciduous Forest[J]. Forests, 2020, 11(3): 318.

  11. 徐宇凌,靳佳,王权. 毛竹叶片生化组分高光谱指数研究:结合实测与模拟数据集[J]. 三峡生态环境监测,20205(4): 56-64.

  12. Jin J, Wang Q. Selection of informative spectral bands for PLS models to estimate foliar chlorophyll content using hyperspectral reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 3064-3072.

  13. Jin J, Wang Q, Wang J, et al. Tracing water and energy fluxes and reflectance in an arid ecosystem using the integrated model SCOPE[J]. Journal of Environmental Management, 2019, 231: 1082-1090.

  14. Jin J, Wang Q. Evaluation of Informative Bands Used in Different PLS Regressions for Estimating Leaf Biochemical Contents from Hyperspectral Reflectance[J]. Remote Sensing, 2019, 11(2): 197.

  15. Jin J, Wang Q, Wang J. Combing both simulated and field-measured data to develop robust hyperspectral indices for tracing canopy transpiration in drought-tolerant plant[J]. Environmental Monitoring and Assessment, 2019, 191: 13.

  16. Wang Q, Jin J. Hyperspectral Remote Sensing of Plant Water Status and Plant Water Use under Drought Stress. In Green Science and Technology, Park, E.Y., Saito, T., Kawagishi, H., Hara, M., Eds. CRC Press: Boca Raton, 2019; 10.1201/9780367814953-9

  17. Xu P, Wang Q, Jin J, et al. An increase in nighttime light detected for protected areas in mainland China based on VIIRS DNB data[J]. Ecological Indicators, 2019, 107: 10615.

  18. Jin J, Wang Q. Informative bands used by efficient hyperspectral indices to predict leaf biochemical contents are determined by their relative absorptions[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 616-626.

  19. Wang Q, Jin J, Sonobe R, Chen J M. Derivative hyperspectral vegetation indices in characterizing forest biophysical and biochemical quantities. In Hyperspectral Indices and Image Classifications for Agriculture and Vegetation, Thenkabail, P.S., Lyon, J.G., Huete, A., Eds. CRC Press: Boca Raton, FL, 2018; 10.1201/9781315159331-2pp. 27-63.

  20. Jin J, Wang Q. Hyperspectral indices based on first derivative spectra closely trace canopy transpiration in a desert plant[J]. Ecological Informatics, 2016, 35: 1-8.

  21. Jin J, Wang Q, Li L. Long-term oscillation of drought conditions in the western China: an analysis of PDSI on a decadal scale[J]. Journal of Arid Land, 2016, 8(6): 819-831.

  22. Jin J, Wang Q. Assessing ecological vulnerability in western China based on Time-Integrated NDVI data[J]. Journal of Arid Land, 2016, 8(4): 533-545.

  23. 张思楠,王权,靳佳,徐璐,管海英. 应用光谱指数法估算多枝柽柳同化枝叶绿素含量[J]. 干旱区研究,201633(5): 1088-1097.

  24. Wang Q, Jin J. Leaf transpiration of drought tolerant plant can be captured by hyperspectral reflectance using PLSR analysis[J]. iForest - Biogeosciences and Forestry, 2015, 9: 30-37.

  25. 管海英,王权,赵鑫,靳佳,张思楠. 两种典型荒漠植被区土壤微生物量碳的季节变化及影响因素分析[J]. 干旱区地理,201538(1): 67-75.

  26. 管海英,赵鑫,靳佳,张思楠,徐璐. 荒漠生态系统土壤表层微生物量碳空间分布及其影响因子[J]. 干旱区研究,201431(6): 1125-1131.

 

上一条:邓树林

下一条:赵银军